New drug and material discoveries to be untangled in VR: Surgical manipulation of real-time molecular simulations accelerates research tasks
New drug and material discoveries to be untangled in VR: Surgical manipulation of real-time molecular simulations accelerates research tasks
Scientists Use Yawning To Study Social Presence In VR
Scientists Use Yawning To Study Social Presence In VR
Why Schools Need Access to Virtual Reality Now
Why Schools Need Access to Virtual Reality Now
Virtual reality can help make people more compassionate compared to other media
Virtual reality can help make people more compassionate compared to other media
Virtual reality could serve as powerful environmental education tool
Virtual reality could serve as powerful environmental education tool

Study probes effect of virtual reality on learning

Picture yourself in a virtual reality simulator, atop the spinning Earth, the moon and all its phases just beyond, the stars surrounding you in glorious 3D. In this simulation, you have no body; there’s nothing between you and the universe but light saber-like controls shining in front of you – and a set of quiz questions.

Doctoral candidate Jack Madden removes VR goggles.

The simulation, “Learning Moon Phases in Virtual Reality,” is part of a multi-phase research study to determine whether the compelling, immersive nature of virtual reality (VR) provides a better learning outcome than conventional hands-on activities. The study – which found no significant difference among hands-on, computer simulation or VR learning – is one of the first to look at the impacts of VR on learning.

“We’ve seen a lot of technology fads in education,” said senior author Natasha Holmes , the Ann S. Bowers Assistant Professor in the College of Arts and Sciences, in physics. “And while technology can be very powerful in the classroom, as a discipline-based education researcher, it’s my job to do the controlled studies with real students to understand how, when and why these tools impact students.”

“It’s important to understand how the novelty of the technology affects how people use it,” said co-author Andrea Stevenson Won, assistant professor of communication and director of the Virtual Embodiment Lab . “Can the enthusiasm people feel for VR be turned into learning gains?”

The researchers randomly assigned Cornell undergraduates to one of three methods: hands-on, computer simulation or VR. The instructions and quiz questions were as closely matched to each other as possible, with the activities modeled on common astronomy tutorials.

Google Cardboard Was a Side Project. The Google Cardboard platform was developed by David Coz and Damien Henry. The two engineers developed the project as part of Google’s”innovation time off” program in which engineers are encouraged to spend 20 percent of their time working on projects that interest them. Thankfully, Google backed the project, and Google Cardboard is now one of the cornerstones of scalable virtual reality.

The traditional hands-on activity had three components – a light to mimic the sun, a short stick with a ball on top to represent the moon and the student serving as the Earth holding the stick. Participants kept the ball at arm’s length and spun in a circle to create an illumination pattern that mimics the moon’s phases.

The VR and desktop activities – designed by a team of graduate and undergraduate students in communication, computer science and astronomy – included accurate star maps and relative motions of the celestial bodies.

In the desktop computer simulation, participants could manipulate their viewing position and planar perspective as well as the progression of time, which was synchronized with the three bodies’ orbits and rotation.

The VR option was similar to the computer simulation, allowing participants to move forward and backward in time, change the moon’s orbit and choose different viewing positions.

Some of the questions required rote memorization and some required building mental models and making predictions, so the researchers could look at different kinds of learning. But despite the radical differences between the three teaching methods, pre- and post-assessments revealed that students learned equally well with all three.

Today, thanks to these innovators, users can now enjoy quality VR experiences such as TheaterMax – a widescreen cinematic experience powered by Lenovo’s VR technology. It lets users attach either the Lenovo VIBE X3 or VIBE K4 Note smartphone to the front of a VR Headset to view movies, play games and experience way more than they’ve bargained for, all on a supersized virtual screen.

“The similarity in learning outcome is particularly interesting, given that the VR participants had to learn how to use new technology at the same time they were learning the moon phases,” said lead author Jack Madden, doctoral candidate in the field of astronomy. “What would the outcome have been if they’d already been familiar with using VR to learn?”

But while learning outcomes might have been similar, participants’ attitudes toward the methods were not. After completing their activity, each participant was shown the other two methods. The VR activity was preferred by 78 percent of the participants; one person described it as “the coolest thing I’ve ever seen.”

Those who did not prefer VR cited feeling “uncomfortable with the overwhelming sensory input.” For some, feeling like being in space was so exciting that it distracted from their learning.

The paper, “ Virtual Reality as a Teaching Tool for Moon Phases and Beyond ,” was presented at the 2018 Physics Education Research Conference and published in the peer-reviewed 2018 Physics Education Research Conference Proceedings. Additional contributing authors were Jonathon Schuldt, associate professor of communication in the College of Agriculture and Life Sciences; graduate students Byungdoo Kim, Swati Pandita and Yilu Sun; and T.J. Stone ‘19.

“The next iteration will study the effects of avatar embodiment on learning outcomes,” Pandita said. “Several participants mentioned feeling nervous because they didn’t have a body and remarked, ‘There’s no space suit so how can I breathe?’ The lack of a virtual body may have affected their willingness to explore the environment freely. We want to see if people will feel more encouraged to move around and engage more with the environment if they have an avatar.”

The Royals Are Also Using It. You know that virtual reality is big when highly prominent people are also getting in on it. In March 2018, Prince Harry and Meghan Markle honored International Women's Day by encouraging young women to study science and technology. In the process, they attended a school and tested out a virtual reality set. The couple had a positive experience with virtual reality. They both appeared to enjoy learning about the technology and how the headset works.

The study was conducted in the Virtual Embodiment Lab, in Mann Library. The research is a collaboration with the Department of Physics and received support from Oculus Education.

Linda B. Glaser is a staff writer for the College of Arts and Sciences.

Heady Virtual Reality Helps Seniors Experience Another World
Heady Virtual Reality Helps Seniors Experience Another World
Spherical display brings virtual collaboration closer to reality
Spherical display brings virtual collaboration closer to reality
People think and behave differently in virtual reality than they do in real life
People think and behave differently in virtual reality than they do in real life
What it's like to take drugs in virtual reality
What it's like to take drugs in virtual reality