New drug and material discoveries to be untangled in VR: Surgical manipulation of real-time molecular simulations accelerates research tasks
New drug and material discoveries to be untangled in VR: Surgical manipulation of real-time molecular simulations accelerates research tasks
Scientists Use Yawning To Study Social Presence In VR
Scientists Use Yawning To Study Social Presence In VR
Why Schools Need Access to Virtual Reality Now
Why Schools Need Access to Virtual Reality Now
Virtual reality can help make people more compassionate compared to other media
Virtual reality can help make people more compassionate compared to other media
Virtual reality could serve as powerful environmental education tool
Virtual reality could serve as powerful environmental education tool

Study probes effect of virtual reality on learning

Picture yourself in a virtual reality simulator, atop the spinning Earth, the moon and all its phases just beyond, the stars surrounding you in glorious 3D. In this simulation, you have no body; there’s nothing between you and the universe but light saber-like controls shining in front of you – and a set of quiz questions.

Doctoral candidate Jack Madden removes VR goggles.

The simulation, “Learning Moon Phases in Virtual Reality,” is part of a multi-phase research study to determine whether the compelling, immersive nature of virtual reality (VR) provides a better learning outcome than conventional hands-on activities. The study – which found no significant difference among hands-on, computer simulation or VR learning – is one of the first to look at the impacts of VR on learning.

“We’ve seen a lot of technology fads in education,” said senior author Natasha Holmes , the Ann S. Bowers Assistant Professor in the College of Arts and Sciences, in physics. “And while technology can be very powerful in the classroom, as a discipline-based education researcher, it’s my job to do the controlled studies with real students to understand how, when and why these tools impact students.”

“It’s important to understand how the novelty of the technology affects how people use it,” said co-author Andrea Stevenson Won, assistant professor of communication and director of the Virtual Embodiment Lab . “Can the enthusiasm people feel for VR be turned into learning gains?”

The researchers randomly assigned Cornell undergraduates to one of three methods: hands-on, computer simulation or VR. The instructions and quiz questions were as closely matched to each other as possible, with the activities modeled on common astronomy tutorials.

It Is Global. Virtual reality is not just a thing in the United States alone. People all over the globe are learning to embrace the technology. Some of the biggest virtual reality conventions are actually held in other nations. Some of the leading companies behind virtual reality are located overseas as well. Virtual reality is gradually becoming a great way to connect with people from around the world. No matter the distance, this technology can bring people together.

The traditional hands-on activity had three components – a light to mimic the sun, a short stick with a ball on top to represent the moon and the student serving as the Earth holding the stick. Participants kept the ball at arm’s length and spun in a circle to create an illumination pattern that mimics the moon’s phases.

The VR and desktop activities – designed by a team of graduate and undergraduate students in communication, computer science and astronomy – included accurate star maps and relative motions of the celestial bodies.

In the desktop computer simulation, participants could manipulate their viewing position and planar perspective as well as the progression of time, which was synchronized with the three bodies’ orbits and rotation.

The VR option was similar to the computer simulation, allowing participants to move forward and backward in time, change the moon’s orbit and choose different viewing positions.

Some of the questions required rote memorization and some required building mental models and making predictions, so the researchers could look at different kinds of learning. But despite the radical differences between the three teaching methods, pre- and post-assessments revealed that students learned equally well with all three.

The VR Cardboard launched by Google was a Side Project developed by David Coz and Damien Henry. They created this project during the Google’s “Innovation Time Off” program in which developers were encouraged to spend 20 percent of their time on the things of their interest.

“The similarity in learning outcome is particularly interesting, given that the VR participants had to learn how to use new technology at the same time they were learning the moon phases,” said lead author Jack Madden, doctoral candidate in the field of astronomy. “What would the outcome have been if they’d already been familiar with using VR to learn?”

But while learning outcomes might have been similar, participants’ attitudes toward the methods were not. After completing their activity, each participant was shown the other two methods. The VR activity was preferred by 78 percent of the participants; one person described it as “the coolest thing I’ve ever seen.”

Those who did not prefer VR cited feeling “uncomfortable with the overwhelming sensory input.” For some, feeling like being in space was so exciting that it distracted from their learning.

The paper, “ Virtual Reality as a Teaching Tool for Moon Phases and Beyond ,” was presented at the 2018 Physics Education Research Conference and published in the peer-reviewed 2018 Physics Education Research Conference Proceedings. Additional contributing authors were Jonathon Schuldt, associate professor of communication in the College of Agriculture and Life Sciences; graduate students Byungdoo Kim, Swati Pandita and Yilu Sun; and T.J. Stone ‘19.

“The next iteration will study the effects of avatar embodiment on learning outcomes,” Pandita said. “Several participants mentioned feeling nervous because they didn’t have a body and remarked, ‘There’s no space suit so how can I breathe?’ The lack of a virtual body may have affected their willingness to explore the environment freely. We want to see if people will feel more encouraged to move around and engage more with the environment if they have an avatar.”

The State of VR in the Early 2000s. After so many capable devices on the market and so many let downs that didn’t truly capture the audience they deserved, virtual reality didn’t see much development in the early 2000s. Virtual Reality was at the background in the development of new technology. It took a step back, letting personal devices, such as computers, laptops, iPods, smartphones and tablets take over, which may very well have been the right step. With the development of new technologies, a new door was opened for virtual reality, because now head-tracking and capable displays were cheaper than ever before. However, it wasn’t before one start-up company mentioned the idea, that Virtual Reality truly took off on the consumer’s market.

The study was conducted in the Virtual Embodiment Lab, in Mann Library. The research is a collaboration with the Department of Physics and received support from Oculus Education.

Linda B. Glaser is a staff writer for the College of Arts and Sciences.

Heady Virtual Reality Helps Seniors Experience Another World
Heady Virtual Reality Helps Seniors Experience Another World
Spherical display brings virtual collaboration closer to reality
Spherical display brings virtual collaboration closer to reality
People think and behave differently in virtual reality than they do in real life
People think and behave differently in virtual reality than they do in real life
What it's like to take drugs in virtual reality
What it's like to take drugs in virtual reality